Abstract
Plant copper amine oxidases (CuAOs) are involved in wound healing, defense against pathogens, methyl-jasmonate-induced protoxylem differentiation, and abscisic acid (ABA)-induced stomatal closure. In the present study, we investigated the role of the Arabidopsis thaliana CuAOδ (AtCuAOδ; At4g12290) in the ABA-mediated stomatal closure by genetic and pharmacological approaches. Obtained data show that AtCuAOδ is up-regulated by ABA and that two Atcuaoδ T-DNA insertional mutants are less responsive to this hormone, showing reduced ABA-mediated stomatal closure and H2O2 accumulation in guard cells as compared to the wild-type (WT) plants. Furthermore, CuAO inhibitors, as well as the hydrogen peroxide (H2O2) scavenger N,N1-dimethylthiourea, reversed most of the ABA-induced stomatal closure in WT plants. Consistently, AtCuAOδ over-expressing transgenic plants display a constitutively increased stomatal closure and increased H2O2 production compared to WT plants. Our data suggest that AtCuAOδ is involved in the H2O2 production related to ABA-induced stomatal closure.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献