Affiliation:
1. Three-Gorges Reservoir Area (Chongqing) Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
2. School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
Abstract
Landscape ecological risk is considered the basis for regional ecosystem management decisions. Thus, it is essential to understand the spatial and temporal evolutionary patterns and drivers of landscape ecological risk. However, existing studies lack exploration of the long-term time series and driving mechanisms of landscape ecological risk. Based on multi-type remote sensing data, this study assesses landscape pattern changes and ecological risk in the Three Gorges Reservoir Area from 1990 to 2020 and ranks the driving factors using a geographical detector. We then introduce the geographically weighted regression model to explore the local spatial contributions of driving factors. Our results show: (1) From 1990 to 2020, the agricultural land decreased, while forest and construction land expanded in the Three Gorges Reservoir Area. The overall landscape pattern shifted toward aggregation. (2) The landscape ecological risk exhibited a decreasing trend. The areas with relatively high landscape ecological risk were primarily concentrated in the main urban area in the western region of the Three Gorges Reservoir Area and along the Yangtze River, with apparent spatial aggregation. (3) Social and natural factors affected landscape ecological risk. The main driving factors were human interference, annual average temperature, population density, and annual precipitation; interactions occurred between the drivers. (4) The influence of driving factors on landscape ecological risk showed spatial heterogeneity. Spatially, the influence of social factors (human interference and population density) on landscape ecological risk was primarily positively correlated. Meanwhile, the natural factors’ (annual average temperature and annual precipitation) influence on landscape ecological risk varied widely in spatial distribution, and the driving mechanisms were more complex. This study provides a scientific basis and reference for landscape ecological risk management, land use policy formulation, and optimization of ecological security patterns.
Funder
the Major Science and Technology Projects of the Ministry of Water Resources
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献