A Rapid Parallel Mosaicking Algorithm for Massive Remote Sensing Images Utilizing Read Filtering

Author:

Nie Pei12ORCID,Cui Zhenqi23,Wan Yaping1

Affiliation:

1. College of Computer Science, University of South China, Hengyang 421001, China

2. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

3. School of Geosciences and Info-Physics, University of Central South, Changsha 410012, China

Abstract

Mosaicking is a crucial step in the application of remote sensing images. The amount of remote sensing image data has grown rapidly, along with the expansion of observed areas and increased image resolution. As a result, traditional serial mosaicking techniques are facing significant challenges. In recent times, various studies have utilized high-performance computing to hasten image mosaicking and attain favorable outcomes. Nevertheless, the current research only accelerates mosaicking through external technology, without optimizing from the perspective of algorithm flow, which introduces unnecessary data I/O and slows down the mosaicking. This paper introduces a rapid parallel remote sensing image mosaicking algorithm utilizing read filtering. To begin with, the target images are divided into blocks and stored in a distributed file system. Subsequently, the image blocks are read and filtered based on a designated input format. Finally, the overlapping and non-overlapping areas are read and processed asynchronously, reducing the data I/O and computing overhead, thereby improving the efficiency of parallel computing. The experiments indicate that the mosaicking algorithm introduced in this paper enhances throughput and speedup by an average of 1.38 MB/S and 0.87 relative to the current techniques, respectively, concerning various datasets and cores. This study provides a theoretical foundation and novel ideas for processing remote sensing images on cluster platforms.

Funder

China Scholarship Council

Hunan Provincial Department of Education

University of South China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3