Machine Learning-Based Calibrated Model for Forecast Vienna Mapping Function 3 Zenith Wet Delay

Author:

Li Feijuan12,Li Junyu12ORCID,Liu Lilong12,Huang Liangke12ORCID,Zhou Lv12ORCID,He Hongchang12

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China

2. Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin 541006, China

Abstract

An accurate estimation of zenith wet delay (ZWD) is crucial for global navigation satellite system (GNSS) positioning and GNSS-based precipitable water vapor (PWV) inversion. The forecast Vienna Mapping Function 3 (VMF3-FC) is a forecast product provided by the Vienna Mapping Functions (VMF) data server based on the European Centre for Medium-Range Weather Forecasts (ECMWF)-based numerical weather prediction (NWP) model. The VMF3-FC can provide ZWD at any time and for any location worldwide; however, it has an uneven accuracy distribution and fails to match the application requirements in certain areas. To address this issue, in this study, a calibrated model for VMF3-FC ZWD, named the XZWD model, was developed by utilizing observation data from 492 radiosonde sites globally from 2019–2021 and the eXtreme Gradient Boosting (XGBoost) algorithm. The performance of the XZWD model was validated using 2022 observation data from the 492 radiosonde sites. The XZWD model yields a mean bias of −0.03 cm and a root-mean-square error (RMSE) of 1.64 cm. The XZWD model outperforms the global pressure and temperature 3 (GPT3) model, reducing the bias and RMSE by 94.64% and 58.90%, respectively. Meanwhile, the XZWD model outperforms VMF3-FC, with a reduction of 92.68% and 6.29% in bias and RMSE, respectively. Furthermore, the XZWD model reduces the impact of ZWD accuracy by latitude, height, and seasonal variations more effectively than the GPT3 model and VMF3-FC. Therefore, the XZWD model yields higher stability and accuracy in global ZWD forecasting.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation of China

Foundation of Guilin University of Technology

Guangxi Key Laboratory of Spatial Information and Geomatics

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3