Impact of Future Climate and Land Use Changes on Runoff in a Typical Karst Basin, Southwest China

Author:

Mo Chongxun123,Bao Mengxiang123,Lai Shufeng123,Deng Juan4,Tang Peiyu123,Xing Zhenxiang5ORCID,Tang Gang6,Li Lingguang6

Affiliation:

1. College of Architecture and Civil Engineering, Guangxi University, Nanning 530004, China

2. Guangxi Provincial Engineering Research Center of Water Security and Intelligent Control for Karst Region, Guangxi University, Nanning 530004, China

3. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

4. Three Gorges Smart Water Technology Co., Ltd., Shanghai 200020, China

5. School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150038, China

6. Guangxi Water & Power Design Institute Co., Ltd., Nanning 530023, China

Abstract

Climate change and land use change are the two main factors affecting the regional water cycle and water resources management. However, runoff studies in the karst basin based on future scenario projections are still lacking. To fill this gap, this study proposes a framework consisting of a future land use simulation model (FLUS), an automated statistical downscaling model (ASD), a soil and water assessment tool (SWAT) and a multi-point calibration strategy. This frameword was used to investigate runoff changes under future climate and land use changes in karst watersheds. The Chengbi River basin, a typical karst region in southwest China, was selected as the study area. The ASD method was developed for climate change projections based on the CanESM5 climate model. Future land use scenarios were projected using the FLUS model and historical land use data. Finally, the SWAT model was calibrated using a multi-site calibration strategy and was used to predict future runoff from 2025–2100. The results show that: (1) the developed SWAT model obtained a Nash efficiency coefficient of 0.83, which can adequately capture the spatial heterogeneity characteristics of karst hydro-climate; (2) land use changes significantly in all three future scenarios, with the main phenomena being the interconversion of farmland and grassland in SSPs1-2.6, the interconversion of grassland, farmland and artificial surfaces in SSPs2-4.5 and the interconversion of woodland, grassland and artificial surfaces in SSPs5-8.5; (3) the average annual temperature will show an upward trend in the future, and the average annual precipitation will increase by 11.53–14.43% and (4) the future annual runoff will show a significant upward trend, with monthly runoff mainly concentrated in July–September. The variability and uncertainty of future runoff during the main-flood period may increase compared to the historical situation. The findings will benefit future water resources management and water security in the karst basin.

Funder

National Natural Science Foundation of China

Science and Technology Award Incubation Project of Guangxi University

Guangxi Water Resource Technology Promotion Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3