Multi-Indicators Decision for Product Design Solutions: A TOPSIS-MOGA Integrated Model

Author:

Yu Zeyuan,Zhao Wu,Guo XinORCID,Hu Huicong,Fu Chuan,Liu YingORCID

Abstract

Design decisions occur in all phases of product design and largely affect the merits of the final solution, which will ultimately determine the success or failure of the product in the market. Product design is a continuous process, and a large number of existing studies have proposed decision methods and decision indicators for the characteristics of different stages of design. These methods and indicators can meet the requirements of one of the phases: demand analysis, conceptual design, or detailed design. However, further research can still be conducted on the integration of methods throughout the design phase, using intelligent design methods, and improving the design continuity and efficiency. To address this problem, a TOPSIS-MOGA-based multi-indicators decision model for product design solutions is proposed, including its product design process, decision algorithm, and selection method. First, a TOPSIS-MOGA integrated model for conceptual design and detailed design process is established, the continuity of decision-making methods is achieved by integrating decision indicators. Second, conceptual design solutions are selected through the technique for order of preference by similarity to ideal solution (TOPSIS), based on hesitant fuzzy linguistic term sets and entropy weight method. Finally, detailed design solutions are selected through a multiobjective genetic algorithm (MOGA), based on a polynomial-based response surface model and central combination experimental design method. A case study of the decision-making in the design of high-voltage electric power fittings is presented, the conceptual design phase and the detailed design phase are connected through the indicators, which demonstrates that the proposed approach is helpful in the decision-making of the product design solutions.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference61 articles.

1. Chapter 2—Product design as a requirement for economic assembly;Lotter,1986

2. Data-driven product design toward intelligent manufacturing: A review

3. A model for computer-aided creative design based on cognition and iteration

4. Utilizing EEG to Explore Design Fixation during Creative Idea Generation

5. Research on Tool Selection Strategy Based on Multi-method Integration;Guo,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3