Improved Production and Insulinotropic Properties of Exopolysaccharide by Phellinus igniarius in Submerged Cultures

Author:

Lung Ming-YuORCID,Deng Kai-Wen

Abstract

Phellinu igniarius (P. igniarius), a basidiomycete belonging to the family Polyporaceae, is a medicinal basidiomycetous fungus belonging to the Hymenochaetaceae and is an excellent remedy with anticancer and antioxidant qualities. The mushroom has been used as traditional medicines for the treatment of cardiovascular disease, tuberculosis, liver or heart diseases, bellyache, bloody gonorrhea, and diabetes. However, the limited production and market shortage have been attributed to the slow growth and the difficult collection of the fruiting body as well as the rare natural resources. The problem can be solved through the effective approach of submerged culture to produce a high bioactivity polysaccharide of P. igniarius. The project was proposed to investigate the effect of a surfactant on the production of polysaccharide in submerged culture of P. igniarius and their insulinotropic properties. Eight different surfactants including PEG series (4000, 6000), Tween series (20, 40, 80, 85), and Span series (20, 80) all at a concentration of 0.5 g/L were supplemented in turn to the basal medium in shake flasks. Among the various surfactants tested, Tween 80 exhibited the greatest exopolysaccharide production of 128.43 mg/L, and PEG 6000 showed the maximum biomass of 6.76 mg/mL. To find the optimal Tween 80 concentration for biomass and exopolysaccharide production, different Tween 80 levels (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 g/L) were used in the medium. The maximal exopolysaccharide production of 132.76 mg/mL was achieved with the addition of 0.6 g/L of Tween 80 to the medium. The experimental results exhibited that the maximum of mycelia production in a stirred tank bioreactor was 3.01 mg/mL at Tween 80 0.2 g/L. In this study, their compounds, molecular weight, and protein content from fermentation product extracts were also tested. The average molecular weights of exopolysaccharide and intracellular polysaccharide were 1.715 × 106 Da and 4.87 × 105 Da, respectively. The protein contents of exopolysaccharide and intracellular polysaccharide were about 3.68% and 3.02%. The maximum RINm5F cell proliferations of exopolysaccharide and intracellular polysaccharide at 2 mg/mL were 142.3% and 120.07%, respectively. Cell proliferations of exopolysaccharide and intracellular polysaccharide increased with their concentrations. The maximum insulin secretion of exopolysaccharide at 2 mg/mL on RINm5F cell insulin was 0.615 μg/L.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3