Reduction of Potential-Induced-Degradation of p-Type PERC Solar Cell Modules by an Ion-Diffusion Barrier Layer Underneath the Front Glass

Author:

Jang EunjinORCID,Oh Kyoung-suk,Ryu SangwooORCID

Abstract

With the maturation of silicon-based technologies, silicon solar cells have achieved a high conversion efficiency that approaches the theoretical limit. Currently, great efforts are being made to enhance the reliability of silicon solar cells. When the silicon solar cells are made into modules, potential-induced-degradation (PID) occurs during operation because of the high voltage applied between the frame and the cells, which reduces the efficiency and output power. The diffusion of Na+ ions from the front glass and the increased leakage current along the migration path are the major causes of PID. In this work, atomic layer deposition (ALD)-grown amorphous thin Al2O3 layers are introduced underneath the front glass to prevent the diffusion of Na+ ions and the resulting PID. Accelerated PID tests showed that an ALD-grown Al2O3 layer of 30 nm could effectively suppress PID seriously affecting the conversion efficiency or light transmittance. The introduction of an ion-diffusion barrier underneath the front glass is expected to contribute to securing the long-term reliability of silicon-based electricity generation, together with the introduction of barrier layers inside the solar cells.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3