Abstract
With the maturation of silicon-based technologies, silicon solar cells have achieved a high conversion efficiency that approaches the theoretical limit. Currently, great efforts are being made to enhance the reliability of silicon solar cells. When the silicon solar cells are made into modules, potential-induced-degradation (PID) occurs during operation because of the high voltage applied between the frame and the cells, which reduces the efficiency and output power. The diffusion of Na+ ions from the front glass and the increased leakage current along the migration path are the major causes of PID. In this work, atomic layer deposition (ALD)-grown amorphous thin Al2O3 layers are introduced underneath the front glass to prevent the diffusion of Na+ ions and the resulting PID. Accelerated PID tests showed that an ALD-grown Al2O3 layer of 30 nm could effectively suppress PID seriously affecting the conversion efficiency or light transmittance. The introduction of an ion-diffusion barrier underneath the front glass is expected to contribute to securing the long-term reliability of silicon-based electricity generation, together with the introduction of barrier layers inside the solar cells.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Korea Institute for Advancement of Technology
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献