Comparative Study between Flatness-Based and Field-Oriented Control Methods of a Grid-Connected Wind Energy Conversion System

Author:

Aimene Merzak,Payman AlirezaORCID,Dakyo BrayimaORCID

Abstract

Wind energy is an alternative to meet the growing energy demand. Control of wind turbines should help the reliability and stable operation of the power grid. Furthermore, they should respect the technical requirements according to the grid codes to inject the wind energy into the grid. In this paper, a well-known field-oriented control (FOC) method and a new control method based on the flatness properties (FBC) are presented and compared. These control methods are applied to a wind energy conversion system (WECS), which connects a variable-speed wind turbine (WT) based on a permanent magnet synchronous generator (PMSG) to the grid via a back-to-back converter. The main aim of both control methods is to extract the maximum power from the wind. For this purpose, the mathematical model of each subsystem, i.e., WT, PMSG, and electrical grid, is presented. To evaluate and to compare the dynamic behavior of the high-power wind energy conversion system, it is modeled and the control strategies are developed using SimPowerSystems Toolbox in MATLAB. The simulation results obtained in the time domain show that the FBC performs better at managing the energy in the studied system. Indeed, the proposed FBC is a high bandwidth control method with only one closed-loop control, which leads to a high dynamic performance. Therefore, that strategy can be used to provide ancillary services such as frequency control and spinning reserves according to the grid codes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference39 articles.

1. Simulation of Wind Speeds with Spatio-Temporal Correlation

2. Pitch Angle Optimization for Small Wind Turbines Based on a Hierarchical Fuzzy-PID Controller and Anticipated Wind Speed Measurement

3. Global Wind Report 2019;Lee,2020

4. Optimal auxiliary frequency control of wind turbine generators and coordination with synchronous generators;Sun;CSEE J. Power Energy Syst.,2021

5. Study and Control of a Variable-Speed Wind-Energy System Connected to the Grid;Mansour;Int. J. Renew. Energy Res.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3