TLSCA-SVM Fault Diagnosis Optimization Method Based on Transfer Learning

Author:

Zhang Aihua,Yu DanluORCID,Zhang Zhiqiang

Abstract

In fault-diagnosis classification, a pressing issue is the lack of target-fault samples. Obtaining fault data requires a great amount of time, energy and financial resources. These factors affect the accuracy of diagnosis. To address this problem, a novel fault-diagnosis-classification optimization method, namely TLSCA-SVM, which combines the sine cosine algorithm and support vector machine (SCA-SVM) with transfer learning, is proposed here. Considering the availability of fault data, this thesis uses the data generated by analog circuits from different faults for analysis. Firstly, the data signal is collected from different faults of the analog circuit, and then the characteristic data are extracted from the data signals by the wavelet packets. Secondly, to employ the principal component analysis (PCA) reduces the feature-value dimension. Lastly, as an auxiliary condition, the error-penalty item is added to the objective function of the SCA-SVM classifier to construct an innovative fault-diagnosis model namely TLSCA-SVM. Among them, the Sallen–Key bandpass filter circuit and the CSTV filter circuit are used to provide the data for horizontal- and vertical-contrast classification results. Comparing the SCA with the five optimization algorithms, it is concluded that the performance of SCA optimization parameters has certain advantages in the classification accuracy and speed. Additionally, to prove the superiority of the SCA-SVM classification algorithm, the five classification algorithms are compared with the SCA-SVM algorithm. Simulation results showed that the SCA-SVM classification has higher precision and a faster response time compared to the others. After adding the error penalty term to SCA-SVM, TLSCA-SVM requires fewer fault samples to process fault diagnosis. Ultimately, the method which is proposed could not only perform fault diagnosis effectively and quickly, but also could run effectively to achieve the effect of transfer learning in the case of less failure data.

Funder

Natural Science Foundation of Liaoning

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3