Abstract
Chemical and oil processes are intrinsically sources of potential hazards. Although traditional qualitative hazard identification methods are simple, systematic, and flexible, such methodologies present limitations related to the inherent subjectivity, dependence on the team’s level of experience, and widespread time consumption of the members involved. In this context, the present work aims to develop a systematic way to use computational modeling and simulation tools for hazard identification. After extensive literature review, the present work proposes a methodology based on the association of the main points of previous works, with new contributions regarding the preparation for the simulations and the characterization of the minimum set of process variables that can enable appropriate interpretation of the results. The propene polymerization process (LIPP-SHAC process) was used as a case study to illustrate the proposed procedure. The paper explores how the model can be adapted for safety analyses and simulations for different hazard scenarios. The results obtained with different models are discussed and compared to those obtained with a traditional hazard identification approach to discuss how computational process modeling and simulation tools can sum to heuristic analysis. In conclusion, the use of simulations complementing the human-based approach can indeed enhance the understanding of mechanisms of hazardous scenarios, lessen conservative decision-making, and avoid overlooking device failures that can pose a severe hazard to the process.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference32 articles.
1. The Bhopal accident
2. The contribution of human factors to accidents in the offshore oil industry
3. Flixborough: the Explosion and its Aftermath
4. Risk Analysis and Control for Industrial Processes Gas, Oil and Chemicals;Pasman,2015
5. Guidelines for Hazard Evaluation Procedures,1992
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献