Disturbances in Electrodermal Activity Recordings Due to Different Noises in the Environment

Author:

Bari Dindar S.12ORCID,Aldosky Haval Y. Y.3,Tronstad Christian4,Martinsen Ørjan G.45

Affiliation:

1. Scientific Research Center, University of Zakho, Zakho 42002, Iraq

2. Department of Physics, College of Science, University of Zakho, Zakho 42002, Iraq

3. Department of Physics, College of Science, University of Duhok, Duhok 99454, Iraq

4. Department of Clinical and Biomedical Engineering, Oslo University Hospital, 0424 Oslo, Norway

5. Department of Physics, University of Oslo, 0371 Oslo, Norway

Abstract

Electrodermal activity (EDA) is a widely used psychophysiological measurement in laboratory-based studies. In recent times, these measurements have seen a transfer from the laboratory to wearable devices due to the simplicity of EDA measurement as well as modern electronics. However, proper conditions for EDA measurement are recommended once wearable devices are used, and the ambient conditions may influence such measurements. It is not completely known how different types of ambient noise impact EDA measurement and how this translates to wearable EDA measurement. Therefore, this study explored the effects of various noise disturbances on the generation of EDA responses using a system for the simultaneous recording of all measures of EDA, i.e., skin conductance responses (SCRs), skin susceptance responses (SSRs), and skin potential responses (SPRs), at the same skin site. The SCRs, SSRs, and SPRs due to five types of noise stimuli at different sound pressure levels (70, 75, 80, 85, and 90 dB) were measured from 40 participants. The obtained results showed that EDA responses were generated at all levels and that the EDA response magnitudes were significantly (p < 0.001) influenced by the increasing noise levels. Different types of environmental noise may elicit EDA responses and influence wearable recordings outside the laboratory, where such noises are more likely than in standardized laboratory tests. Depending on the application, it is recommended to prevent these types of unwanted variation, presenting a challenge for the quality of wearable EDA measurement in real-world conditions. Future developments to shorten the quality gap between standardized laboratory-based and wearable EDA measurements may include adding microphone sensors and algorithms to detect, classify, and process the noise-related EDA.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3