An Introduction to Ventra: A Programmable Abdominal Phantom for Training, Educational, Research, and Development Purposes

Author:

Tayebi Salar1ORCID,Wise Robert234ORCID,Zarghami Ashkan1ORCID,Dabrowski Wojciech5ORCID,Malbrain Manu L. N. G.567ORCID,Stiens Johan1ORCID

Affiliation:

1. Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium

2. Adult Intensive Care, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford OX3 7LE, UK

3. Discipline of Anaesthesia and Critical Care, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4000, South Africa

4. Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium

5. First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-090 Lublin, Poland

6. Medical Data Management, Medaman, 2440 Geel, Belgium

7. International Fluid Academy, 3360 Lovenjoel, Belgium

Abstract

Background: Intra-abdominal pressure (IAP) is a critical parameter in the care of critically ill patients, as elevated IAP can lead to reduced cardiac output and organ perfusion, potentially resulting in multiple organ dysfunction and failure. The current gold standard for measuring IAP is an indirect technique via the bladder. According to the Abdominal Compartment Society’s Guidelines, new measurement methods/devices for IAP must be validated against the gold standard. Objectives: This study introduces Ventra, an abdominal phantom designed to simulate different IAP levels, abdominal compliance, respiration-related IAP variations, and bladder dynamics. Ventra aims to facilitate the development and validation of new IAP measurement devices while reducing reliance on animal and cadaveric studies. Additionally, it offers potential applications in training and education for biomedical engineering students. This study provides a thorough explanation on the phantom’s design and fabrication, which provides a low-cost solution for advancing IAP measurement research and education. The design concept, technical aspects, and a series of validation experiments determining whether Ventra is a suitable tool for future research are presented in this study. Methods: Ventra’s performance was evaluated through a series of validation tests using a pressure gauge and two intra-gastric (Spiegelberg and CiMON) and two intra-bladder (Accuryn and TraumaGuard) pressure measurement devices. The mean and standard deviation of IAP recordings by each device were investigated. Bland–Altman analysis was used to evaluate bias, precision, limits of agreement, and percentage error for each system. Concordance analysis was performed to assess the ability of Ventra in tracking IAP changes. Results: The phantom demonstrated excellent agreement with reference pressure measurements, showing an average bias of 0.11 ± 0.49 mmHg. A concordance coefficient of 100% was observed for the phantom as well. Ventra accurately simulated different abdominal compliances, with higher IAP values resulting in lower compliance. Abdominal volume changes showed a bias of 0.08 ± 0.07 L/min, and bladder fill volume measurements showed an average difference of 0.90 ± 4.33 mL for volumes ranging from 50 to 500 mL. Conclusion: The validation results were in agreement with the research guidelines of the world abdominal society. Ventra is a reliable tool that will facilitate the development and validation of new IAP measurement devices. It is an effective educational tool for biomedical engineering students as well.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3