Design and Analysis of a Cardioid Flow Tube Valveless Piezoelectric Pump for Medical Applications

Author:

Wang Jialong1,Zhang Fan1,Gui Zhenzhen1ORCID,Wen Yuxin1,Zeng Yaohua1,Xie Tang1,Tan Tian1,Chen Bochuan1,Zhang Jianhui1

Affiliation:

1. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

Piezoelectric pumps play an important role in modern medical technology. To improve the flow rate of valveless piezoelectric pumps with flow tube structures and promote the miniaturization and integration of their designs, a cardioid flow tube valveless piezoelectric pump (CFTVPP) is proposed in this study. The symmetric dual-bend tube design of CFTVPP holds great potential in applications such as fluid mixing and heat dissipation systems. The structure and working principle of the CFTVPP are analyzed, and flow resistance and velocity equations are established. Furthermore, the flow characteristics of the cardioid flow tube (CFT) are investigated through computational fluid dynamics, and the output performance of valveless piezoelectric pumps with different bend radii is studied. Experimental results demonstrate that CFTVPP exhibits the pumping effect, with a maximum vibration amplitude of 182.5 μm (at 22 Hz, 100 V) and a maximum output flow rate of 5.69 mL/min (at 25 Hz, 100 V). The results indicate that a smaller bend radius of the converging bend leads to a higher output flow rate, while the performance of valveless piezoelectric pumps with different diverging bends shows insignificant differences. The CFTVPP offers advantages such as a high output flow rate, low cost, small size for easy integration, and ease of manufacturing.

Funder

Science and Technology Planning Project of Guangzhou City

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3