A Study of the Critical Velocity of the Droplet Transition from the Cassie to Wenzel State on the Symmetric Pillared Surface

Author:

Wu Zhulong,Li Yingqi,Cui Shaohan,Li Xiao,Zhou Zhihong,Tian Xiaobao

Abstract

A droplet hitting a superhydrophobic surface will undergo the Cassie to Wenzel transition when the wetting force exceeds the anti-wetting force. The critical velocity of the droplet’s Cassie to Wenzel state transition can reflect the wettability of the surface. However, the critical velocity research is still at the microscale and has not been extended to the nanoscale mechanism. A cross-scale critical velocity prediction model for superhydrophobic surfaces with symmetric structures is proposed here based on a mechanical equilibrium system. The model’s applicability is verified by experimental data. It demonstrates that the mechanical equilibrium system of droplet impact with capillary pressure and Laplace pressure as anti-wetting forces is more comprehensive, and the model proposed in this study predicts the critical velocity more precisely with a maximum error of 12% compared to the simulation results. Furthermore, the correlation between the simulation at the nanoscale and the evaluation of the macroscopic symmetrical protrusion surface properties is established. Combined with the model and the correlation, the relationship between the microscopic mechanism and the macroscopic examination of droplet dynamics on the superhydrophobic surface be presented, and the wettability evaluation method of macroscopic surfaces based on the molecular simulation mechanism can be realized.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

National Numerical Windtunnel

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3