Computational Study of MHD Darcy–Forchheimer Hybrid Nanofluid Flow under the Influence of Chemical Reaction and Activation Energy over a Stretching Surface

Author:

Haq Izharul,Yassen Mansour F.ORCID,Ghoneim Mohamed E.,Bilal MuhammadORCID,Ali AatifORCID,Weera WajareeORCID

Abstract

The energy and mass transition through Newtonian hybrid nanofluid flow comprised of copper Cu and aluminum oxide (Al2O3) nanoparticles (nps) over an extended surface has been reported. The thermal and velocity slip conditions are also considered. Such a type of physical problems mostly occurs in symmetrical phenomena and are applicable in physics, engineering, applied mathematics, and computer science. For desired outputs, the fluid flow has been studied under the consequences of the Darcy effect, thermophoresis diffusion and Brownian motion, heat absorption, viscous dissipation, and thermal radiation. An inclined magnetic field is applied to fluid flow to regulate the flow stream. Hybrid nanofluid is created by the dispensation of Cu and Al2O3 nps in the base fluid (water). For this purpose, the flow dynamics have been designed as a system of nonlinear PDEs, which are simplified to a system of dimensionless ODEs through resemblance substitution. The parametric continuation method is used to resolve the obtained set of dimensionless differential equations. It has been noticed that the consequences of heat absorption and thermal radiation boost the energy transmission rate; however, the effect of suction constraint and Darcy–Forchhemier significantly diminished the heat transference rate of hybrid nanofluids. Furthermore, the dispersion of Cu and Al2O3 nps in the base fluid remarkably magnifies the velocity and energy transmission rate.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3