An Improved Three-Way K-Means Algorithm by Optimizing Cluster Centers

Author:

Guo Qihang,Yin Zhenyu,Wang PingxinORCID

Abstract

Most of data set can be represented in an asymmetric matrix. How to mine the uncertain information from the matrix is the primary task of data processing. As a typical unsupervised learning method, three-way k-means clustering algorithm uses core region and fringe region to represent clusters, which can effectively deal with the problem of inaccurate decision-making caused by inaccurate information or insufficient data. However, same with k-means algorithm, three-way k-means also has the problems that the clustering results are dependent on the random selection of clustering centers and easy to fall into the problem of local optimization. In order to solve this problem, this paper presents an improved three-way k-means algorithm by integrating ant colony algorithm and three-way k-means. Through using the random probability selection strategy and the positive and negative feedback mechanism of pheromone in ant colony algorithm, the sensitivity of the three k-means clustering algorithms to the initial clustering center is optimized through continuous updating iterations, so as to avoid the clustering results easily falling into local optimization. Dynamically adjust the weights of the core domain and the boundary domain to avoid the influence of artificially set parameters on the clustering results. The experiments on UCI data sets show that the proposed algorithm can improve the performances of three-way k-means clustering results and is effective in revealing cluster structures.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference48 articles.

1. Advances in three-way decisions and granular computing

2. Integrative Levels of Granularity, Human-Centric Information Processing through Granular Modelling;Yao,2009

3. Resilience Analysis of Critical Infrastructures: A Cognitive Approach Based on Granular Computing

4. Granular Computing Analysis and Design of Intelligent Systems;Pedrycz,2013

5. Survey of Clustering Algorithms

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3