Abstract
Motivated by the problem arising out of DNA origami, we give a general counting framework and enumeration formulas for various cellular embeddings of bouquets and dipoles under different kinds of symmetries. Our algebraic framework can be used constructively to generate desired symmetry classes, and we use Burnside’s lemma with various symmetry groups to derive the enumeration formulas. Our results assimilate several existing formulas into this unified framework. Furthermore, we provide new formulas for bouquets with colored edges (and thus for bouquets in nonorientable surfaces) as well as for directed embeddings of directed bouquets. We also enumerate vertex-labeled dipole embeddings. Since dipole embeddings may be represented by permutations, the formulas also apply to certain equivalence classes of permutations and permutation matrices. The resulting bouquet and dipole symmetry formulas enumerate structures relevant to a wide variety of areas in addition to DNA origami, including RNA secondary structures, Feynman diagrams, and topological graph theory. For uncolored objects, we catalog 58 distinct sequences, of which 43 have not, as far as we know, been described previously.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference38 articles.
1. OEIS Foundation Inc. (2022, May 25). The On-Line Encyclopedia of Integer Sequences. Available online: http://oeis.org.
2. Enumerating 2-cell imbeddings of connected graphs;Mull;Proc. Am. Math. Soc.,1988
3. Rieper, R.G. (1990). The Enumeration of Graph Imbeddings. [Ph.D. Dissertation, Western Michigan University].
4. Enumeration of graph embeddings;Kwak;Discret. Math.,1994
5. Enumerating the orientable 2-cell imbeddings of complete bipartite graphs;Mull;J. Graph Theory,1999
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献