Abstract
The increased adoption of cloud computing resources produces major loopholes in cloud computing for cybersecurity attacks. An intrusion detection system (IDS) is one of the vital defenses against threats and attacks to cloud computing. Current IDSs encounter two challenges, namely, low accuracy and a high false alarm rate. Due to these challenges, additional efforts are required by network experts to respond to abnormal traffic alerts. To improve IDS efficiency in detecting abnormal network traffic, this work develops an IDS using a recurrent neural network based on gated recurrent units (GRUs) and improved long short-term memory (LSTM) through a computing unit to form Cu-LSTMGRU. The proposed system efficiently classifies the network flow instances as benign or malevolent. This system is examined using the most up-to-date dataset CICIDS2018. To further optimize computational complexity, the dataset is optimized through the Pearson correlation feature selection algorithm. The proposed model is evaluated using several metrics. The results show that the proposed model remarkably outperforms benchmarks by up to 12.045%. Therefore, the Cu-LSTMGRU model provides a high level of symmetry between cloud computing security and the detection of intrusions and malicious attacks.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献