MLTSP: New 3D Framework, Based on the Multilayer Tensor Spectrum Pyramid

Author:

Kountcheva Roumiana A.ORCID,Mironov Rumen P.ORCID,Kountchev Roumen K.ORCID

Abstract

A tensor representation structure based on the multilayer tensor spectrum pyramid (MLTSP) is introduced in this work. The structure is “truncated”, i.e., part of the high-frequency spectrum coefficients is cut-off, and on the retained low-frequency coefficients, obtained at the output of each pyramid layer, a hierarchical tensor SVD (HTSVD) is applied. This ensures a high concentration of the input tensor energy into a small number of decomposition components of the tensors obtained at the coder output. The implementation of this idea is based on a symmetrical coder/decoder. An example structure for a cubical tensor of size 8 × 8 × 8, which is represented as a two-layer tensor spectrum pyramid, where 3D frequency-ordered fast Walsh–Hadamard transform and HTSVD are used, is given in this paper. The analysis of the needed mathematical operations proved the low computational complexity of the new approach, due to a lack of iterative calculations. The high flexibility of the structure in respect to the number of pyramid layers, the kind of used orthogonal transforms, the number of retained spectrum coefficients, and HTSVD components, permits us to achieve the desired accuracy of the restored output tensor, imposed by the application. Furthermore, this paper presents one possible application for 3D object searches in a tensor database. In this case, to obtain the invariant representation of the 3D objects, in the spectrum pyramid, the 3D modified Mellin–Fourier transform is embedded, and the corresponding algorithm is shown.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3