A Residual Attention and Local Context-Aware Network for Road Extraction from High-Resolution Remote Sensing Imagery

Author:

Liu Ziwei,Wang MingchangORCID,Wang FengyanORCID,Ji XueORCID

Abstract

Extracting road information from high-resolution remote sensing images (HRI) can provide crucial geographic information for many applications. With the improvement of remote sensing image resolution, the image data contain more abundant feature information. However, this phenomenon also enhances the spatial heterogeneity between different types of roads, making it difficult to accurately discern the road and non-road regions using only spectral characteristics. To remedy the above issues, a novel residual attention and local context-aware network (RALC-Net) is proposed for extracting a complete and continuous road network from HRI. RALC-Net utilizes a dual-encoder structure to improve the feature extraction capability of the network, whose two different branches take different feature information as input data. Specifically, we construct the residual attention module using the residual connection that can integrate spatial context information and the attention mechanism, highlighting local semantics to extract local feature information of roads. The residual attention module combines the characteristics of both the residual connection and the attention mechanism to retain complete road edge information, highlight essential semantics, and enhance the generalization capability of the network model. In addition, the multi-scale dilated convolution module is used to extract multi-scale spatial receptive fields to improve the model’s performance further. We perform experiments to verify the performance of each component of RALC-Net through the ablation study. By combining low-level features with high-level semantics, we extract road information and make comparisons with other state-of-the-art models. The experimental results show that the proposed RALC-Net has excellent feature representation ability and robust generalizability, and can extract complete road information from a complex environment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin province

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, MNR

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3