A Spatial-Enhanced LSE-SFIM Algorithm for Hyperspectral and Multispectral Images Fusion

Author:

Wang YuleiORCID,Zhu Qingyu,Shi Yao,Song Meiping,Yu Chunyan

Abstract

The fusion of a hyperspectral image (HSI) and multispectral image (MSI) can significantly improve the ability of ground target recognition and identification. The quality of spatial information and the fidelity of spectral information are normally contradictory. However, these two properties are non-negligible indicators for multi-source remote-sensing images fusion. The smoothing filter-based intensity modulation (SFIM) method is a simple yet effective model for image fusion, which can improve the spatial texture details of the image well, and maintain the spectral characteristics of the image significantly. However, traditional SFIM has a poor effect for edge information sharpening, leading to a bad overall fusion result. In order to obtain better spatial information, a spatial filter-based improved LSE-SFIM algorithm is proposed in this paper. Firstly, the least square estimation (LSE) algorithm is combined with SFIM, which can effectively improve the spatial information quality of the fused image. At the same time, in order to better maintain the spatial information, four spatial filters (mean, median, nearest and bilinear) are used for the simulated MSI image to extract fine spatial information. Six quality indexes are used to compare the performance of different algorithms, and the experimental results demonstrate that the LSE-SFIM based on bilinear (LES-SFIM-B) performs significantly better than the traditional SFIM algorithm and other spatially enhanced LSE-SFIM algorithms proposed in this paper. Furthermore, LSE-SFIM-B could also obtain similar performance compared with three state-of-the-art HSI-MSI fusion algorithms (CNMF, HySure, and FUSE), while the computing time is much shorter.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3