Experimental and Numerical Study on Gas-Liquid Two-Phase Flow Behavior and Flow Induced Noise Characteristics of Radial Blade Pumps

Author:

Si QiaoruiORCID,Shen Chunhao,Ali Asad,Cao Rui,Yuan Jianping,Wang ChuanORCID

Abstract

Miniature drainage pumps with a radial blade are widely used in situations with critical constant head and low noise requests, but the stable operation state is often broken up by the entraining gas. In order to explore the internal flow characteristics under gas–liquid two phase flow, pump performance and emitted noise measurements were processed under different working conditions. Three-dimensional numerical calculations based on the Euler inhomogeneous model and obtained experimental boundaries were carried out under different inlet air void fractions (IAVFs). A hybrid numerical method was proposed to obtain the flow-induced emitted noise characteristics. The results show there is little influence on pump characteristics when the IAVF is less than 1%. The pump head slope degradation was found to increase with air content. The bubbles adhere to the impeller hub on the blade’s suction side and spread to the periphery with a big IAVF, leading to unstable operation. It is obvious that vortices appear inside the impeller flow passage as IAVF reaches 6.5%. The two-phase flow pattern has a small effect on the characteristic frequency distribution of pressure fluctuation and emitted noise, but the corresponding pulsation intensity and noise level will increase. The study could provide some reference for low noise design of the drainage pump.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3