A Novel Intelligent Condition Monitoring Framework of Essential Service Water Pumps

Author:

Liu Yingqian1ORCID,Huang Qian2,Li Huairui1ORCID,Li Yunpeng1,Li Sihan1,Zhu Rongsheng1,Fu Qiang1

Affiliation:

1. Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang 212013, China

2. China Nuclear Power Engineering Co., Ltd., Beijing 100840, China

Abstract

Essential service water pumps are necessary safety devices responsible for discharging waste heat from containments through seawater; their condition monitoring is critical for the safe and stable operation of seaside nuclear power plants. However, it is difficult to directly apply existing intelligent methods to these pumps. Therefore, an intelligent condition monitoring framework is designed, including the parallel implementation of unsupervised anomaly detection and fault diagnosis. A model preselection algorithm based on the highest validation accuracy is proposed for anomaly detection and fault diagnosis model selection among existing models. A novel information integration algorithm is proposed to fuse the output of anomaly detection and fault diagnosis. According to the experimental results of modules, a kernel principal component analysis using mean fusion processing multi-channel data (AKPCA (fusion)) is selected, and a support vector machine using mean fusion processing multi-channel data (SVM (fusion)) is selected. The overall test accuracy and false negative rate of AKPCA (fusion) are 0.83 and 0.144, respectively, and the overall test accuracy and f1-score of SVM (fusion) are 0.966 and 1, respectively. The test results of AKPCA (fusion), SVM (fusion), and the proposed information integration algorithm show that the information integration algorithm successfully avoids a lack of abnormal status information and misdiagnosis. The proposed framework is a meaningful attempt to achieve the intelligent condition monitoring of complex equipment.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3