Multi-Tone Harmonic Balance Optimization for High-Power Amplifiers through Coarse and Fine Models Based on X-Parameters

Author:

Kouhalvandi LidaORCID,Ceylan OsmanORCID,Ozoguz SerdarORCID,Matekovits LadislauORCID

Abstract

In this study, we focus on automated optimization design methodologies to concurrently trade off between power gain, output power, efficiency, and linearity specifications in radio frequency (RF) high-power amplifiers (HPAs) through deep neural networks (DNNs). The RF HPAs are highly nonlinear circuits where characterizing an accurate and desired amplitude and phase responses to improve the overall performance is not a straightforward process. For this case, we propose a coarse and fine modeling approach based on firstly modeling the involved transistor and then selecting the best configuration of HAP along with optimizing the involved input and output termination networks through DNNs. In the fine phase, we firstly construct the equivalent modeling of the GaN HEMT transistor by using X-parameters. Then in the coarse phase, we utilize hidden layers of the modeled transistor and replace the HPA’s DNN to model the behavior of the selected HPA by using S-parameters. If the suitable accuracy of HPA modeling is not achieved, the hyperparameters of the fine model are improved and re-evaluated in the HPA model. We call the optimization process coarse and fine modeling since the evaluation process is performed from S-parameters to X-parameters. This stage of optimization can ensure modeling the nonlinear HPA design that includes a high number of parameters in an effective way. Furthermore, for accelerating the optimization process, we use the classification DNN for selecting the best topology of HPA for modeling the most suitable configuration at the coarse phase. The proposed modeling strategy results in relatively highly accurate HPA designs that generate post-layouts automatically, where multi-tone harmonic balance specifications are optimized once together without any human interruptions. To validate the modeling approach and optimization process, a 10 W HPA is simulated and measured in the operational frequency band of 1.8 GHz to 2.2 GHz, i.e., the L-band. The measurement results demonstrate a drain efficiency higher than 54% and linear gain performance more than 12.5 dB, with better than 50 dBc adjacent channel power ratio (ACPR) after DPD.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of 200W Double Biased GaN Power Amplifier Based on X Parameter;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

2. Study of X-Parameters Modeling for Microwave Power Devices Based on ANNs;2023 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO);2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3