Introducing a Marine Biorefinery System for the Integrated Production of Biofuels, High-Value-Chemicals, and Co-Products: A Path Forward to a Sustainable Future

Author:

Zaky Abdelrahman SalehORCID

Abstract

Biofuels have many environmental and practical benefits as a transportation fuel. They are among the best alternatives to fossil fuels- thanks to their capacity for negative carbon emissions, which is vital for archiving the global ambition of a net-zero economy. However, conventional biofuel production takes place on inland sites and relies on freshwater and edible crops (or land suitable for edible crop production), which has led to the food versus fuel debate. It also suffers technical and economical barriers owing to the energy balance and the cost of production compared with fossil fuels. Establishing a coastal integrated marine biorefinery (CIMB) system for the simultaneous production of biofuels, high-value chemicals, and other co-products could be the ultimate solution. The proposed system is based on coastal sites and relies entirely on marine resources including seawater, marine biomass (seaweed), and marine microorganisms (marine yeasts and marine microalgae). The system does not require the use of arable land and freshwater in any part of the production chain and should be linked to offshore renewable energy sources to increase its economic feasibility and environmental value. This article aims to introduce the CIMB system as a potential vehicle for addressing the global warming issue and speeding the global effort on climate change mitigation as well as supporting the world’s water, food and energy security. I hope these perspectives serve to draw attention into research funding for this approach.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3