Ultrasonic Delignification and Microstructural Characterization of Switchgrass

Author:

Onu Olughu OnuORCID,Tabil Lope G.ORCID,Dumonceaux TimORCID

Abstract

This present study was undertaken to investigate the ultrasonic delignification of switchgrass (Panicum virgatum L.) and the effects of ultrasonic irradiation on the molecular and microstructure of switchgrass. We investigated this question using response surface methodology (RSM) featuring a four-factor, three-level Box–Behnken experimental design with acoustic power (120, 180, and 240 W), solid–solvent ratio (1/25, 1/20, and 1/15 g/mL), hammer mill screen size (1.6, 3.2, and 6.4 mm), and sonication time (10, 30, and 50 min) as factors, while delignification (%) was the response variable. The native and treated switchgrass samples were further characterized through crystallinity measurements and electron microscopy. The results of lignin analysis show that the percent delignification ranged between 1.86% and 20.11%. The multivariate quadratic regression model developed was statistically significant at p < 0.05. SEM and TEM micrographs of the treated switchgrass grinds resulted in cell wall disruption at the micro- and nano-scales. XRD analysis revealed a reduction in the mean crystallite size and crystallinity index from 15.39 to 13.13 Å and 48.86% to 47.49%, respectively, while no significant change occurred in the d-spacings. The results of this investigation show that ultrasonic irradiation induces chemical and structural changes in switchgrass, which could enhance its use for biofuel and bioproducts applications.

Funder

BioFuelNet Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference56 articles.

1. Historical Perspective on How and Why Switchgrass was Selected as a "Model" High-Potential Energy Crop

2. Conventional and Molecular Breeding for Improvement of Biofuel Crops: Past, Present, and Future;Bhattacharya,2011

3. Switchgrass

4. Developing Switchgrass as a Bioenergy Crop;McLaughlin,1999

5. Genetic Modification of Herbaceous Plants for Feed and Fuel

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3