Risk Assessment in Energy Infrastructure Installations by Horizontal Directional Drilling Using Machine Learning

Author:

Krechowicz MariaORCID,Krechowicz AdamORCID

Abstract

Nowadays we can observe a growing demand for installations of new gas pipelines in Europe. A large number of them are installed using trenchless Horizontal Directional Drilling (HDD) technology. The aim of this work was to develop and compare new machine learning models dedicated for risk assessment in HDD projects. The data from 133 HDD projects from eight countries of the world were gathered, profiled, and preprocessed. Three machine learning models, logistic regression, random forests, and Artificial Neural Network (ANN), were developed to predict the overall HDD project outcome (failure free installation or installation likely to fail), and the occurrence of identified unwanted events. The best performance in terms of recall and accuracy was achieved for the developed ANN model, which proved to be efficient, fast and robust in predicting risks in HDD projects. Machine learning applications in the proposed models enabled eliminating the involvement of a group of experts in the risk assessment process and therefore significantly lower the costs associated with the risk assessment process. Future research may be oriented towards developing a comprehensive risk management system, which will enable dynamic risk assessment taking into account various combinations of risk mitigation actions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. Natural Gas Supply Statistics, Gross Inland Consumption Natural Gas EU. 1990–2019https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_supply_statistics&oldid=500422

2. Environmental Impacts of Conventional Open-Cut Pipeline Installation and Trenchless Technology Methods: State-of-the-Art Review

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3