An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios

Author:

Hiremath MitavachanORCID,Viebahn PeterORCID,Samadi SaschaORCID

Abstract

Roadmaps for India’s energy future foresee that coal power will continue to play a considerable role until the middle of the 21st century. Among other options, carbon capture and storage (CCS) is being considered as a potential technology for decarbonising the power sector. Consequently, it is important to quantify the relative benefits and trade-offs of coal-CCS in comparison to its competing renewable power sources from multiple sustainability perspectives. In this paper, we assess coal-CCS pathways in India up to 2050 and compare coal-CCS with conventional coal, solar PV and wind power sources through an integrated assessment approach coupled with a nexus perspective (energy-cost-climate-water nexus). Our levelized costs assessment reveals that coal-CCS is expensive and significant cost reductions would be needed for CCS to compete in the Indian power market. In addition, although carbon pricing could make coal-CCS competitive in relation to conventional coal power plants, it cannot influence the lack of competitiveness of coal-CCS with respect to renewables. From a climate perspective, CCS can significantly reduce the life cycle GHG emissions of conventional coal power plants, but renewables are better positioned than coal-CCS if the goal is ambitious climate change mitigation. Our water footprint assessment reveals that coal-CCS consumes an enormous volume of water resources in comparison to conventional coal and, in particular, to renewables. To conclude, our findings highlight that coal-CCS not only suffers from typical new technology development related challenges—such as a lack of technical potential assessments and necessary support infrastructure, and high costs—but also from severe resource constraints (especially water) in an era of global warming and the competition from outperforming renewable power sources. Our study, therefore, adds a considerable level of techno-economic and environmental nexus specificity to the current debate about coal-based large-scale CCS and the low carbon energy transition in emerging and developing economies in the Global South.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference127 articles.

1. World Energy Outlook,2019

2. WEO-2015 Special Report: India Energy Outlook,2015

3. Annual Report 2018–2019,2019

4. ClimateWatch: Global Historical Emissionshttps://www.climatewatchdata.org/ghg-emissions

5. 4 Charts Explain Greenhouse Gas Emissions by Countries and Sectorshttps://www.wri.org/blog/2020/02/greenhouse-gas-emissions-by-country-sector

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3