A Lightweight Forest Scene Image Dehazing Network Based on Joint Image Priors

Author:

Zhao Xixuan123ORCID,Miao Yu12,Jin Zihui12,Zhang Jiaming12ORCID,Kan Jiangming123

Affiliation:

1. School of Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China

2. Key Laboratory of State Forestry Administration on Forestry Equipment and Automation, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China

3. Foshan-Zhongke Innovation Research Institute of Intelligent Agriculture and Robotics, Jingu Zhichuang Industrial Community, No. 2 Yongan North Road, Dawei Community, Guicheng Street, Nanhai District, Foshan 528251, China

Abstract

Fog interference is an unfavorable issue when using vision sensors to monitor forest environmental resources. The existence of fog causes intelligent forest vision sensor equipment to fail to obtain accurate information on environmental resources. Therefore, this study proposes a lightweight forest scene image dehazing network to remove fog interference from the vision system. To deal with the extraction of detailed forest image features, we propose utilizing joint image priors including white balance, contrast, and gamma correction feature maps as inputs of the network to strengthen the learning ability of the deep network. Focusing on reducing the computational cost of the network, four different kinds of Ghost Bottleneck blocks, which adopt an SE attention mechanism to better learn the abundant forest image features for our network, are adopted. Moreover, a lightweight upsampling module combining a bilinear interpolation method and a convolution operation is proposed, thus reducing the computing space used by the fog removal module in the intelligent equipment. In order to adapt to the unique color and texture features of forest scene images, the cost function consisting of L1 loss and multi-scale structural similarity (MS-SSIM) loss is specially designed to train the proposed network. The experimental results show that our proposed method obtains more natural visual effects and better evaluation indices. The proposed network is trained both on indoor and outdoor synthetic datasets and tested on synthetic and real foggy images. The PSNR achieves an average value of 26.00 dB and SSIM achieves 0.96 on the indoor synthetic dataset, while PSNR achieves an average value of 25.58 dB and SSIM achieves 0.94 on the outdoor synthetic test images. The average processing time of our proposed dehazing network for a single foggy image with a size of 480 × 640 is 0.26 s.

Funder

Guangdong Basic and Applied Basic Research Foundation

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-stage recurrent feature sharing network for video dehazing;Expert Systems with Applications;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3