Energy Performance Analysis and Modelling of LoRa Prototyping Boards

Author:

Ould SolomonORCID,Bennett Nick S.ORCID

Abstract

LoRaWAN has gained significant attention for Internet-of-Things (IOT) applications due to its low power consumption and long range potential for data transmission. While there is a significant body of work assessing LoRA coverage and data transmission characteristics, there is a lack of data available about commercially available LoRa prototyping boards and their power consumption, in relation to their features. It is currently difficult to estimate the power consumption of a LoRa module operating under different transmission profiles, due to a lack of manufacturer data available. In this study, power testing has been carried out on physical hardware and significant variation was found in the power consumption of competing boards, all marketed as “extremely low power”. In this paper, testing results are presented alongside an experimentally-derived power model for the lowest power LoRa module, and power requirements are compared to firmware settings. The power analysis adds to existing work showing trends in data-rate and transmission power settings effects on electrical power consumption. The model’s accuracy is experimentally verified and shows acceptable agreement to estimated values. Finally, applications for the model are presented by way of a hypothetical scenario and calculations performed in order to estimate battery life and energy consumption for varying data transmission intervals.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3