Abstract
The idea defended in this paper consists in finding, at any time and everywhere, the arrangement of containers within a composite container. The digital image of the real arrangement obtained defines its digital twin. This image evolves at the same time as its real twin. It can be used throughout the logistics chain during loading/unloading phases in hubs, to check the completeness of a load, to find the particular position of a container, etc. This digital twin is obtained through the collection of neighborhood information from the sensor nodes embedded on each container. This embedded solution allows accessibility to this information everywhere. This proximity information and the instrumentation of the containers define new types of constraints and a new version of a packing problem. We propose here a model integrating them. This model is implemented and tested on different test cases, and numerical results are provided. These show that, under certain conditions that will be presented, it is possible to obtain the digital twin of the real arrangement.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献