The Effect of Soundwaves on Foamability Properties and Sensory of Beers with a Machine Learning Modeling Approach

Author:

Gonzalez Viejo Claudia,Fuentes Sigfredo,Torrico Damir,Lee Mei,Hu Yue,Chakraborty Sanjit,Dunshea Frank

Abstract

The use of ultrasounds has been implemented to increase yeast viability, de-foaming, and cavitation in foods and beverages. However, the application of low frequency audible sound to decrease bubble size and improve foamability has not been explored. In this study, three treatments using India Pale Ale beers were tested, which include (1) a control, (2) the application of audible sound during fermentation, and (3) the application of audible sound during natural carbonation. Five different audible frequencies (20 Hz, 30 Hz, 45 Hz, 55 Hz, and 75 Hz) were applied daily for one minute each (starting from the lowest frequency) during fermentation (11 days, treatment 2) and carbonation (22 days, treatment 3). Samples were measured in triplicates using the RoboBEER to assess color and foam-related parameters. A trained panel (n = 10) evaluated the intensity of sensory descriptors. Results showed that samples with sonication treatment had significant differences in the number of small bubbles, alcohol, and viscosity compared to the control. Furthermore, except for foam texture, foam height, and viscosity, there were non-significant differences in the intensity of any sensory descriptor, according to the rating from the trained sensory panel. The use of soundwaves is a potential treatment for brewing to improve beer quality by increasing the number of small bubbles and foamability without disrupting yeast or modifying the aroma and flavor profile.

Publisher

MDPI AG

Subject

Food Science

Reference39 articles.

1. Física Para Las Ciencias de la Vida;Cromer,1981

2. Musica. Volumen III. Profesores de Educacion Secundaria. Temario Para la Preparacion de Oposiciones;Serrano Vida,2003

3. Acoustical properties;Figura,2007

4. Glasscock-Shambaugh Surgery of the Ear;Glasscock,2003

5. General Chemistry: Atoms First;Vining,2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3