Abstract
Foods preserved with sorbic acid or its salts can undergo spoilage with the formation of chemicals characterized by odors of plastic, hydrocarbons, or kerosene. 1,3-pentadiene, which is formed through the decarboxylation of sorbic acid or its salts, is one such compound. Numerous species of molds and yeasts have been reported as capable of degrading sorbic acid. This work is aimed to identify the off-odor compounds in samples of strawberry-flavored water preserved with potassium sorbate and sodium benzoate. In addition, the mold isolated from this drink was evaluated for the ability to form undesirable compounds, and the results revealed the presence of 1,4-pentadiene and benzaldehyde in the tested samples. The mold isolated from the samples was identified as Penicillium corylophilum. During its 5-day incubation at 25 °C in a liquid medium, potassium sorbate added at a final concentration of 200 and 400 mg/L was completely assimilated by the growing mycelium and converted into 1,4-pentadiene. The concentration of the latter was determined as 46.5 and 92.6 mg/L, respectively. The decrease in the concentration of sodium benzoate exceeded 53% in the broth spiked at 200 mg/L and 23% at 400 mg/L, resulting in the formation of benzaldehyde.
Reference33 articles.
1. Commission Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives;Off. J. Eur. Union. L,2011
2. Sodium Benzoate and Benzoic Acid;Chipley,2004
3. Sorbic Acid and Sorbates;Stopforth,2004
4. SORBIC ACID AS A FUNGISTATIC AGENT FOR FOODS..
5. SORBIC ACID AS A FUNGISTATIC AGENT FOR FOODS..
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献