Study of High Power Ultrasound for Oak Wood Barrel Regeneration: Impact on Wood Properties and Sanitation Effect

Author:

Breniaux Marion,Renault Philippe,Meunier Fabrice,Ghidossi Rémy

Abstract

This study aims to investigate the ability of high power ultrasound (HPU) to ensure oak barrel sterilization and wood structure preservation. Optimization was performed in terms of temperature and time and the impact of the HPU process on the porous material was also characterized. In this research, several wood characteristics were considered, such as the specific surface area, hydrophobicity, oxygen desorption and spoilage microorganisms after treatment. The study showed that the microbial stabilization could be obtained with HPU 60 °C/6 min. The results obtained show that microorganisms are impacted up to a depth of 9 mm, with a Brettanomyces bruxellensis population < 1 log CFU/g. The operating parameters used during the HPU treatment can also impact on wood exchange surface and oxygen desorption kinetics indicating that tartrate is removed. Indeed, the total oxygen desorption rate was recovered after HPU treatment, close to a new oak barrel, and thus may indicate that there is no impact on the ultrastructure (vessel, pore size or rays). Finally, wood wettability can also be impacted, depending on the temperature and the duration of exposure.

Publisher

MDPI AG

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3