GUN4 Affects the Circadian Clock and Seedlings Adaptation to Changing Light Conditions

Author:

Li Tao,Wu Rui,Liu Zhixin,Wang Jiajing,Guo Chenxi,Zhou Yaping,Bawa GeorgeORCID,Sun XuwuORCID

Abstract

The chloroplast is a key organelle for photosynthesis and perceiving environmental information. GENOME UNCOUPLED 4 (GUN4) has been shown to be required for the regulation of both chlorophyll synthesis, reactive oxygen species (ROS) homeostasis and plastid retrograde signaling. In this study, we found that growth of the gun4 mutant was significantly improved under medium strong light (200 μmol photons m−2s−1) compared to normal light (100 μmol photons m−2s−1), in marked contrast to wild-type (WT). Further analysis revealed that GUN4 interacts with SIGNAL RECOGNITION PARTICLE 54 KDA SUBUNIT (SRP43) and SRP54. RNA-seq analysis indicated that the expression of genes for light signaling and the circadian clock is altered in gun4 compared with (WT). qPCR analysis confirmed that the expression of the clock genes CLOCK-RELATED 1 (CCA1), LATE ELONGATION HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1 (TOC1) and PSEUDO RESPONSE REGULATOR 7 (PRR7) is significantly changed in the gun4 and srp54 mutants under normal and medium strong light conditions. These results suggest that GUN4 may coordinate the adaptation of plants to changing light conditions by regulating the biological clock, although it is not clear whether the effect is direct or indirect.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3