The Effect of Fullerenol C60(OH)36 on the Antioxidant Defense System in Erythrocytes

Author:

Grebowski JacekORCID,Kazmierska-Grebowska Paulina,Cichon NataliaORCID,Piotrowski PiotrORCID,Litwinienko GrzegorzORCID

Abstract

Background: Fullerenols (water-soluble derivatives of fullerenes), such as C60(OH)36, are biocompatible molecules with a high ability to scavenge reactive oxygen species (ROS), but the mechanism of their antioxidant action and cooperation with endogenous redox machinery remains unrecognized. Fullerenols rapidly distribute through blood cells; therefore, we investigated the effect of C60(OH)36 on the antioxidant defense system in erythrocytes during their prolonged incubation. Methods: Human erythrocytes were treated with fullerenol at concentrations of 50–150 µg/mL, incubated for 3 and 48 h at 37 °C, and then hemolyzed. The level of oxidative stress was determined by examining the level of thiol groups, the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase), and by measuring erythrocyte microviscosity. Results: The level of thiol groups in stored erythrocytes decreased; however, in the presence of higher concentrations of C60(OH)36 (100 and 150 µg/mL), the level of -SH groups increased compared to the control. Extending the incubation to 48 h caused a decrease in antioxidant enzyme activity, but the addition of fullerenol, especially at higher concentrations (100–150 µg/mL), increased its activity. We observed that C60(OH)36 had no effect on the microviscosity of the interior of the erythrocytes. Conclusions: In conclusion, our results indicated that water-soluble C60(OH)36 has antioxidant potential and efficiently supports the enzymatic antioxidant system within the cell. These effects are probably related to the direct interaction of C60(OH)36 with the enzyme that causes its structural changes.

Funder

National Science Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3