Implantation of Various Cell-Free Matrixes Does Not Contribute to the Restoration of Hyaline Cartilage within Full-Thickness Focal Defects

Author:

Ibragimova Shabnam I.,Medvedeva Ekaterina V.,Romanova Irina A.,Istranov Leonid P.,Istranova Elena V.,Lychagin Aleksey V.ORCID,Nedorubov Andrey A.,Timashev Peter S.ORCID,Telpukhov Vladimir I.,Chagin Andrei S.

Abstract

Articular cartilage is a highly organized tissue that has a limited ability to heal. Tissue engineering is actively exploited for joint tissue reconstruction in numerous cases of articular cartilage degeneration associated with trauma, arthrosis, rheumatoid arthritis, and osteoarthritis. However, the optimal scaffolds for cartilage repair are not yet identified. Here we have directly compared five various scaffolds, namely collagen-I membrane, collagen-II membrane, decellularized cartilage, a cellulose-based implant, and commercially available Chondro-Gide® (Geistlich Pharma AG, Wolhusen, Switzerland) collagen membrane. The scaffolds were implanted in osteochondral full-thickness defects, formed on adult Wistar rats using a hand-held cutter with a diameter of 2.0 mm and a depth of up to the subchondral bone. The congruence of the articular surface was almost fully restored by decellularized cartilage and collagen type II-based scaffold. The most vivid restoration was observed 4 months after the implantation. The formation of hyaline cartilage was not detected in any of the groups. Despite cellular infiltration into scaffolds being observed in each group except cellulose, neither chondrocytes nor chondro-progenitors were detected. We concluded that for restoration of hyaline cartilage, scaffolds have to be combined either with cellular therapy or morphogens promoting chondrogenic differentiation.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3