Lipofuscin Granule Bisretinoid Oxidation in the Human Retinal Pigment Epithelium forms Cytotoxic Carbonyls

Author:

Yakovleva Marina,Dontsov Alexander,Trofimova Natalia,Sakina Natalia,Kononikhin AlexeyORCID,Aybush Arseny,Gulin Alexander,Feldman TatianaORCID,Ostrovsky Mikhail

Abstract

Age-related macular degeneration (AMD) is the primary cause of central blindness among the elderly. AMD is associated with progressive accumulation of lipofuscin granules in retinal pigment epithelium (RPE) cells. Lipofuscin contains bisretinoid fluorophores, which are photosensitizers and are phototoxic to RPE and neuroretinal cells. In the presence of oxygen, bisretinoids are also oxidized, forming various products, consisting primarily of aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that in AMD, bisretinoid oxidation products are increased in RPE lipofuscin granules. The purpose of the present study was to determine if these products were toxic to cellular structures. The physicochemical characteristics of bisretinoid oxidation products in lipofuscin, which were obtained from healthy donor eyes, were studied. Raman spectroscopy and time-of-flight secondary ion mass spectrometry (ToF–SIMS) analysis identified the presence of free-state aldehydes and ketones within the lipofuscin granules. Together, fluorescence spectroscopy, high-performance liquid chromatography, and mass spectrometry revealed that bisretinoid oxidation products have both hydrophilic and amphiphilic properties, allowing their diffusion through lipofuscin granule membrane into the RPE cell cytoplasm. These products contain cytotoxic carbonyls, which can modify cellular proteins and lipids. Therefore, bisretinoid oxidation products are a likely aggravating factor in the pathogenesis of AMD.

Funder

The Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3