Effects of Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells

Author:

Chittasupho ChudaORCID,Manthaisong Amornrat,Okonogi Siriporn,Tadtong Sarin,Samee Weerasak

Abstract

Wound healing impairment due to a postponed, incomplete, or uncoordinated healing process has been a challenging clinical problem. Much research has focused on wound care, particularly on discovery of new therapeutic approaches for acute and chronic wounds. This study aims to evaluate the effect of the combination of quercetin and curcuminoids at three different ratios on the antimicrobial, antioxidant, cell migration and wound healing properties. The antioxidant activities of quercetin, curcuminoids and the mixtures were tested by DPPH and ABTS free radical scavenging assays. The disc diffusion method was performed to determine the antibacterial activities of quercetin, curcuminoids and the mixtures against S. aureus and P. aeruginosa. The cytotoxicity and cell migratory enhancing effects of quercetin, curcuminoids and the mixtures against human dermal fibroblasts were investigated by MTT assay, scratch assay and Transwell migration assay, respectively. The results showed the synergism of the quercetin and curcuminoid combination to inhibit the growth of S. aureus and P. aeruginosa, with the inhibition zone ranging from 7.06 ± 0.25 to 8.78 ± 0.38 mm, respectively. The DPPH free radical scavenging assay demonstrated that the combination of quercetin and curcuminoids yielded lower IC50 values (15.38–23.70 µg/mL) than curcuminoids alone (25.75 µg/mL). Quercetin and a 3:1 quercetin/curcuminoid mixture at non-toxic concentrations showed the ability to stimulate the migration of fibroblasts across the matrix, whereas only quercetin alone accelerated the wound closure of fibroblasts. In conclusion, the mixture of quercetin and curcuminoids at a 3:1 ratio was the best formulations for use in wound healing due to the antimicrobial, antioxidant and cell-migration-enhancing activities.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3