Radical Scavenging Activity and Pharmacokinetic Properties of Coumarin–Hydroxybenzohydrazide Hybrids

Author:

Antonijević Marko R.ORCID,Avdović Edina H.,Simijonović Dušica M.ORCID,Milanović Žiko B.ORCID,Amić Ana D.,Marković Zoran S.

Abstract

Free radicals often interact with vital proteins, violating their structure and inhibiting their activity. In previous studies, synthesis, characterisation, and the antioxidative properties of the five different coumarin derivatives have been investigated. In the tests of potential toxicity, all compounds exhibited low toxicity with significant antioxidative potential at the same time. In this paper, the radical scavenging activity of the abovementioned coumarin derivatives towards ten different radical species was investigated. It was found that all investigated compounds show good radical scavenging ability, with results that are in correlation with the results published in the previous study. Three additional mechanisms of radical scavenging activity were investigated. It was found that all three mechanisms are thermodynamically plausible and in competition. Interestingly, it was found that products of the Double Hydrogen Atom Transfer (DHAT) mechanism, a biradical species in triplet spin state, are in some cases more stable than singlet spin state analogues. This unexpected trend can be explained by spin delocalisation over the hydrazide bridge and phenolic part of the molecule with a low probability of spin pairing. Besides radical-scavenging activity, the pharmacokinetic and drug-likeness of the coumarin hybrids were investigated. It was found that they exhibit good membrane and skin permeability and potential interactions with P-450 enzymes. Furthermore, it was found that investigated compounds satisfy all criteria of the drug-likeness tests, suggesting they possess a good preference for being used as potential drugs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3