Remote Sensing-Based Quantification of the Summer Maize Yield Gap Induced by Suboptimum Sowing Dates over North China Plain

Author:

Zhang ShaORCID,Bai YunORCID,Zhang JiahuaORCID

Abstract

Estimating yield potential (Yp) and quantifying the contribution of suboptimum field managements to the yield gap (Yg) of crops are important for improving crop yield effectively. However, achieving this goal on a regional scale remains difficult because of challenges in collecting field management information. In this study, we retrieved crop management information (i.e., emerging stage information and a surrogate of sowing date (SDT)) from a remote sensing (RS) vegetation index time series. Then, we developed a new approach to quantify maize Yp, total Yg, and the suboptimum SDT-induced Yg (Yg0) using a process-based RS-driven crop yield model for maize (PRYM–Maize), which was developed in our previous study. PRYM–Maize and the newly developed method were used over the North China Plain (NCP) to estimate Ya, Yp, Yg, and Yg0 of summer maize. Results showed that PRYM–Maize outputs reasonable estimates for maize yield over the NCP, with correlations and root mean standard deviation of 0.49 ± 0.24 and 0.88 ± 0.14 t hm−2, respectively, for modeled annual maize yields versus the reference value for each year over the period 2010 to 2015 on a city level. Yp estimated using our new method can reasonably capture the spatial variations in site-level estimates from crop growth models in previous literature. The mean annual regional Yp of 2010–2015 was estimated to be 11.99 t hm−2, and a Yg value of 5.4 t hm−2 was found between Yp and Ya on a regional scale. An estimated 29–42% of regional Yg in each year (2010–2015) was induced by suboptimum SDT. Results also show that not all Yg0 was persistent over time. Future studies using high spatial-resolution RS images to disaggregate Yg0 into persistent and non-persistent components on a small scale are required to increase maize yield over the NCP.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Natural Science Foundation of China-Shandong Joint Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3