The Indentation-Induced Pop-in Phenomenon and Fracture Behaviors of GaP(100) Single-Crystal

Author:

Chiu Yi-JuiORCID,Jian Sheng-RuiORCID,Lee Jyh-WeiORCID,Juang Jenh-YihORCID

Abstract

The deformation behaviors and fracture features of GaP(100) single-crystal are investigated by using nano- and micro-scale indentation techniques. The hardness and Young’s modulus were measured by nanoindentation using a Berkovich diamond indenter with continuous contact stiffness measurements (CSM) mode and the values obtained were 12.5 ± 1.2 GPa and 152.6 ± 12.8 GPa, respectively. In addition, the characteristic “pop-in” was observed in the loading portion of load-displacement curve, which was caused by the nucleation and/or propagation of dislocations. An energetic estimation methodology on the associated nanoindentation-induced dislocation numbers resulting from the pop-in events was discussed. Furthermore, the Vickers indentation induced fracture patterns of GaP(100) single-crystal were observed and analyzed using optical microscopy. The obtained fracture toughness KC of GaP(100) single-crystal was ~1.7 ± 0.1 MPa·m1/2, which is substantially higher than the KIC values of 0.8 MPa·m1/2 and 1.0 MPa·m1/2 previously reported for of single-crystal and polycrystalline GaP, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3