Texture Evolution during Recrystallization and Grain Growth in Non-Oriented Electrical Steel Produced by Compact Strip Production Process

Author:

Cong Jun-Qiang,Guo Fei-Hu,Qiao Jia-LongORCID,Qiu Sheng-Tao,Wang Hai-Jun

Abstract

Evolution of texture and α*-fiber texture formation mechanism of Fe-0.65%Si non-oriented electrical steel produced by Compact Strip Production (CSP) process during all the thermo-mechanical processing steps were investigated using electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) techniques. Columnar crystal structure of cast slab is fine and well-developed. Textures of the hot-rolled band are quite different in the thickness direction. During annealing of cold-rolled sheet, γ-fiber texture grains would nucleate and grow preferentially, and α*-fiber texture grains mainly nucleate and grow in the shear zone of α-fiber texture of cold-rolled sheet. During the recrystallization process, γ-fiber texture gradually concentrated to {111}<112>, and γ and α*-fiber texture increased significantly. {111}<112> texture priority nucleation at the initial stage of recrystallization. Due to the advantages of nucleation position and quantity, the content of α*-fiber texture is greater than {111}<112> texture in the mid-recrystallization. During grain growth process, {111}<112> oriented grains would grow selectively by virtue of higher mobility, sizes and quantity advantages than that of {411}<148 > and {100}<120>, resulting in the gradual increase of γ-fiber texture and the decline of α *-fiber texture.

Funder

National key research and development plan

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference47 articles.

1. Electrical Steel;He,2012

2. Texture and Magnetic Properties of Non-oriented Silicon Steel;Zhang,2012

3. Material Science Principle of Electrical Steel;Mao,2013

4. Effect of hot-rolling temperature on microstructure and texture of an ultra-low carbon Ti-interstitial-free steel

5. Through process texture evolution and magnetic properties of high Si non-oriented electrical steels

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3