Nb/Sn Liquid-Solid Reactive Diffusion Couples and Their Application to Determination of Phase Equilibria and Interdiffusion Coefficients of Nb-Sn Binary System

Author:

Zhang Jiali,Zhong Jing,Li Qin,Zhang LijunORCID

Abstract

Nb3Sn plays an irreplaceable role in superconducting parts due to its stable performance under high field conditions. Accurate phase equilibria and interdiffusion coefficients are of great significance for designing novel Nb3Sn superconductors. However, the related experimental information is still in a state of scarcity because of the difficulty in fabrication of Nb-Sn alloys caused by the large difference in melting points of Nb and Sn. In this paper, a simple but pragmatic approach was first proposed to prepare the Nb/Sn liquid-solid reactive diffusion couples (LSDCs) at 1100 °C and 1200 °C, of which the phase identification of the formed layer and the measurement of composition-distance profiles were conducted. The formed layer in Nb/Sn LSDCs was confirmed to be Nb3Sn compound. While the measured composition profiles were employed to determine the phase equilibria according to the local equilibrium hypothesis and the interdiffusion coefficients with an aid of the latest version of HitDIC software. The determined phase equilibria of Nb3Sn, (Nb) and liquid show good agreement with the assessed phase diagram. While the calculated interdiffusion coefficients and activation energy for diffusion in Nb3Sn are consistent with both experimental and theoretical data in the literature. Moreover, the growth of the formed Nb3Sn layer in Nb/Sn LSDCs was also found to be diffusion controlled. All the obtained phase equilibria and interdiffusion coefficients are of great value for further thermodynamic and kinetic modeling of the Nb-Sn system. Furthermore, it is anticipated that the presently proposed approach of fabricating liquid-solid reactive diffusion couple should serve as a general one for various alloy systems with large differences in melting points.

Funder

Natural Science Foundation of Hunan Province, China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3