High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal

Author:

Song Yan,Chai MengyuORCID,Han Zelin,Liu Pan

Abstract

The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350–500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.

Funder

China Postdoctoral Science Foundation

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3