Segment-Based Unsupervised Learning Method in Sensor-Based Human Activity Recognition

Author:

Takenaka Koki1,Kondo Kei1,Hasegawa Tatsuhito1ORCID

Affiliation:

1. Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan

Abstract

Sensor-based human activity recognition (HAR) is a task to recognize human activities, and HAR has an important role in analyzing human behavior such as in the healthcare field. HAR is typically implemented using traditional machine learning methods. In contrast to traditional machine learning methods, deep learning models can be trained end-to-end with automatic feature extraction from raw sensor data. Therefore, deep learning models can adapt to various situations. However, deep learning models require substantial amounts of training data, and annotating activity labels to construct a training dataset is cost-intensive due to the need for human labor. In this study, we focused on the continuity of activities and propose a segment-based unsupervised deep learning method for HAR using accelerometer sensor data. We define segment data as sensor data measured at one time, and this includes only a single activity. To collect the segment data, we propose a measurement method where the users only need to annotate the starting, changing, and ending points of their activity rather than the activity label. We developed a new segment-based SimCLR, which uses pairs of segment data, and propose a method that combines segment-based SimCLR with SDFD. We investigated the effectiveness of feature representations obtained by training the linear layer with fixed weights obtained by unsupervised learning methods. As a result, we demonstrated that the proposed combined method acquires generalized feature representations. The results of transfer learning on different datasets suggest that the proposed method is robust to the sampling frequency of the sensor data, although it requires more training data than other methods.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3