Affiliation:
1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
2. Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
3. Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia
Abstract
Dragon fruit (Hylocereus undatus) is a tropical and subtropical fruit that undergoes multiple ripening cycles throughout the year. Accurate monitoring of the flower and fruit quantities at various stages is crucial for growers to estimate yields, plan orders, and implement effective management strategies. However, traditional manual counting methods are labor-intensive and inefficient. Deep learning techniques have proven effective for object recognition tasks but limited research has been conducted on dragon fruit due to its unique stem morphology and the coexistence of flowers and fruits. Additionally, the challenge lies in developing a lightweight recognition and tracking model that can be seamlessly integrated into mobile platforms, enabling on-site quantity counting. In this study, a video stream inspection method was proposed to classify and count dragon fruit flowers, immature fruits (green fruits), and mature fruits (red fruits) in a dragon fruit plantation. The approach involves three key steps: (1) utilizing the YOLOv5 network for the identification of different dragon fruit categories, (2) employing the improved ByteTrack object tracking algorithm to assign unique IDs to each target and track their movement, and (3) defining a region of interest area for precise classification and counting of dragon fruit across categories. Experimental results demonstrate recognition accuracies of 94.1%, 94.8%, and 96.1% for dragon fruit flowers, green fruits, and red fruits, respectively, with an overall average recognition accuracy of 95.0%. Furthermore, the counting accuracy for each category is measured at 97.68%, 93.97%, and 91.89%, respectively. The proposed method achieves a counting speed of 56 frames per second on a 1080ti GPU. The findings establish the efficacy and practicality of this method for accurate counting of dragon fruit or other fruit varieties.
Funder
2023 Guangxi University young and middle-aged teachers scientific research basic ability improvement project
Guangxi Science and Technology Base and Talent Project
Science and Technology Major Project of Guangxi, China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference33 articles.
1. Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam;Luu;Czech J. Food Sci.,2021
2. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: A comprehensive review;Jiang;Trends Food Sci. Technol.,2021
3. Mellowness detection of dragon fruit using deep learning strategy;Vijayakumar;J. Innov. Image Process. (JIIP),2020
4. Proximate analysis of dragon fruit (Hylecereus polyhizus);Ruzainah;American Journal of Applied Sciences,2009
5. Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008, January 23–28). A discriminatively trained, multiscale, deformable part model. Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA.