Production Change Optimization Model of Nonlinear Supply Chain System under Emergencies

Author:

Zhang Jing12ORCID,Wu Yingnian123ORCID,Li Qingkui12

Affiliation:

1. School of Automation, Beijing Information Science and Technology University (BISTU), Beijing 100192, China

2. Institute of Intelligent Networked Things and Cooperative Control, Beijing Information Science and Technology University (BISTU), Beijing 100192, China

3. Intelligent Perception and Control of High-End Equipment Beijing International Science and Technology Cooperation Base, Beijing Information Science and Technology University (BISTU), Beijing 100192, China

Abstract

Aiming at the problem that the upstream manufacturer cannot accurately formulate the production plan after the link of the nonlinear supply chain system changes under emergencies, an optimization model of production change in a nonlinear supply chain system under emergencies is designed. Firstly, based on the structural characteristics of the supply chain system and the logical relationship between production, sales, and storage parameters, a three-level single-chain nonlinear supply chain dynamic system model containing producers, sellers, and retailers was established based on the introduction of nonlinear parameters. Secondly, the radial basis function (RBF) neural network and improved fast variable power convergence law were introduced to improve the traditional sliding mode control, and the improved adaptive sliding mode control is proposed so that it can have a good control effect on the unknown nonlinear supply chain system. Finally, based on the numerical assumptions, the constructed optimization model was parameterized and simulated for comparison experiments. The simulation results show that the optimized model can reduce the adjustment time by 37.50% and inventory fluctuation by 42.97%, respectively, compared with the traditional sliding mode control, while helping the supply chain system to return the smooth operation after the change within 5 days.

Funder

the National Key Research and Development Program of China

the Major Program of National Natural Science Foundation of China

the Classified Development Project of Beijing Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Industrial Process Control Systems;Sensors;2023-08-01

2. Detection and Security Control for Supply Chain System Under FDI Attack;2023 42nd Chinese Control Conference (CCC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3