Evaluating the Ability to Use Contextual Features Derived from Multi-Scale Satellite Imagery to Map Spatial Patterns of Urban Attributes and Population Distributions

Author:

Chao StevenORCID,Engstrom RyanORCID,Mann MichaelORCID,Bedada Adane

Abstract

With an increasing global population, accurate and timely population counts are essential for urban planning and disaster management. Previous research using contextual features, using mainly very-high-spatial-resolution imagery (<2 m spatial resolution) at subnational to city scales, has found strong correlations with population and poverty. Contextual features can be defined as the statistical quantification of edge patterns, pixel groups, gaps, textures, and the raw spectral signatures calculated over groups of pixels or neighborhoods. While they correlated with population and poverty, which components of the human-modified landscape were captured by the contextual features have not been investigated. Additionally, previous research has focused on more costly, less frequently acquired very-high-spatial-resolution imagery. Therefore, contextual features from both very-high-spatial-resolution imagery and lower-spatial-resolution Sentinel-2 (10 m pixels) imagery in Sri Lanka, Belize, and Accra, Ghana were calculated, and those outputs were correlated with OpenStreetMap building and road metrics. These relationships were compared to determine what components of the human-modified landscape the features capture, and how spatial resolution and location impact the predictive power of these relationships. The results suggest that contextual features can map urban attributes well, with out-of-sample R2 values up to 93%. Moreover, the degradation of spatial resolution did not significantly reduce the results, and for some urban attributes, the results actually improved. Based on these results, the ability of the lower resolution Sentinel-2 data to predict the population density of the smallest census units available was then assessed. The findings indicate that Sentinel-2 contextual features explained up to 84% of the out-of-sample variation for population density.

Funder

United States Agency for International Development

The George Washington University Department of Geography

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Urban Roadway in America: The Amount, Extent, and Value;Journal of the American Planning Association;2024-08-05

2. Towards a scalable and transferable approach to map deprived areas using Sentinel-2 images and machine learning;Computers, Environment and Urban Systems;2024-04

3. Eyes on Poverty: A Comprehensive Review of Computer Vision and Textual Data Integration for Poverty Prediction in India;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

4. Evaluating the Ability to Use Contextual Features to Map Deprived Areas ‘Slums’ in Multiple Cities;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

5. Small area estimation of non-monetary poverty with geospatial data;Statistical Journal of the IAOS;2022-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3